Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepShop: A Benchmark for Deep Research Shopping Agents (2506.02839v1)

Published 3 Jun 2025 in cs.IR and cs.AI

Abstract: Web agents for online shopping have shown great promise in automating user interactions across e-commerce platforms. Benchmarks for assessing such agents do not reflect the complexity of real-world shopping scenarios, as they often consist of overly simple queries with deterministic paths, such as "Find iPhone 15." Real shopping scenarios are inherently more layered, involving multi-dimensional product attributes, search filters, and user-specific sorting preferences. To address this gap, we introduce DeepShop, a benchmark designed to evaluate web agents in complex and realistic online shopping environments. DeepShop comprises three key components. (1) Query diversity evolution: Starting from real user queries, we generate diverse queries across five popular online shopping domains. (2) Query complexity evolution: We further evolve these queries to increase complexity, considering product attributes, search filters, and sorting preferences, and classify them into three levels: easy, medium, and hard, based on the number of evolutions. (3) Fine-grained and holistic evaluation: We propose an automated evaluation framework that assesses agent performance in terms of fine-grained aspects (product attributes, search filters, and sorting preferences) and reports the overall success rate through holistic evaluation. We conduct a systematic evaluation of retrieval-augmented generation (RAG) methods, web agents, and deep research systems. Results show that RAG struggles with complex queries due to its lack of web interaction, while other methods face significant challenges with filters and sorting preferences, leading to low overall success rates. We also perform cross-category, complexity-based evaluations and error analyses to support the advancement of deep research shopping agents.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yougang Lyu (11 papers)
  2. Xiaoyu Zhang (144 papers)
  3. Lingyong Yan (29 papers)
  4. Maarten de Rijke (263 papers)
  5. Zhaochun Ren (117 papers)
  6. Xiuying Chen (80 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com