Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Machine vs Machine: Using AI to Tackle Generative AI Threats in Assessment (2506.02046v1)

Published 31 May 2025 in cs.CY and cs.AI

Abstract: This paper presents a theoretical framework for addressing the challenges posed by generative AI in higher education assessment through a machine-versus-machine approach. LLMs like GPT-4, Claude, and Llama increasingly demonstrate the ability to produce sophisticated academic content, traditional assessment methods face an existential threat, with surveys indicating 74-92% of students experimenting with these tools for academic purposes. Current responses, ranging from detection software to manual assessment redesign, show significant limitations: detection tools demonstrate bias against non-native English writers and can be easily circumvented, while manual frameworks rely heavily on subjective judgment and assume static AI capabilities. This paper introduces a dual strategy paradigm combining static analysis and dynamic testing to create a comprehensive theoretical framework for assessment vulnerability evaluation. The static analysis component comprises eight theoretically justified elements: specificity and contextualization, temporal relevance, process visibility requirements, personalization elements, resource accessibility, multimodal integration, ethical reasoning requirements, and collaborative elements. Each element addresses specific limitations in generative AI capabilities, creating barriers that distinguish authentic human learning from AI-generated simulation. The dynamic testing component provides a complementary approach through simulation-based vulnerability assessment, addressing limitations in pattern-based analysis. The paper presents a theoretical framework for vulnerability scoring, including the conceptual basis for quantitative assessment, weighting frameworks, and threshold determination theory.

Summary

We haven't generated a summary for this paper yet.