Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Online Competitive Information Gathering for Partially Observable Trajectory Games (2506.01927v1)

Published 2 Jun 2025 in cs.GT, cs.AI, cs.MA, and cs.RO

Abstract: Game-theoretic agents must make plans that optimally gather information about their opponents. These problems are modeled by partially observable stochastic games (POSGs), but planning in fully continuous POSGs is intractable without heavy offline computation or assumptions on the order of belief maintained by each player. We formulate a finite history/horizon refinement of POSGs which admits competitive information gathering behavior in trajectory space, and through a series of approximations, we present an online method for computing rational trajectory plans in these games which leverages particle-based estimations of the joint state space and performs stochastic gradient play. We also provide the necessary adjustments required to deploy this method on individual agents. The method is tested in continuous pursuit-evasion and warehouse-pickup scenarios (alongside extensions to $N > 2$ players and to more complex environments with visual and physical obstacles), demonstrating evidence of active information gathering and outperforming passive competitors.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.