Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

R2SM: Referring and Reasoning for Selective Masks (2506.01795v1)

Published 2 Jun 2025 in cs.CV

Abstract: We introduce a new task, Referring and Reasoning for Selective Masks (R2SM), which extends text-guided segmentation by incorporating mask-type selection driven by user intent. This task challenges vision-LLMs to determine whether to generate a modal (visible) or amodal (complete) segmentation mask based solely on natural language prompts. To support the R2SM task, we present the R2SM dataset, constructed by augmenting annotations of COCOA-cls, D2SA, and MUVA. The R2SM dataset consists of both modal and amodal text queries, each paired with the corresponding ground-truth mask, enabling model finetuning and evaluation for the ability to segment images as per user intent. Specifically, the task requires the model to interpret whether a given prompt refers to only the visible part of an object or to its complete shape, including occluded regions, and then produce the appropriate segmentation. For example, if a prompt explicitly requests the whole shape of a partially hidden object, the model is expected to output an amodal mask that completes the occluded parts. In contrast, prompts without explicit mention of hidden regions should generate standard modal masks. The R2SM benchmark provides a challenging and insightful testbed for advancing research in multimodal reasoning and intent-aware segmentation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.