Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Spatio-Temporal Decoupled Learning for Spiking Neural Networks (2506.01117v1)

Published 1 Jun 2025 in cs.NE

Abstract: Spiking neural networks (SNNs) have gained significant attention for their potential to enable energy-efficient artificial intelligence. However, effective and efficient training of SNNs remains an unresolved challenge. While backpropagation through time (BPTT) achieves high accuracy, it incurs substantial memory overhead. In contrast, biologically plausible local learning methods are more memory-efficient but struggle to match the accuracy of BPTT. To bridge this gap, we propose spatio-temporal decouple learning (STDL), a novel training framework that decouples the spatial and temporal dependencies to achieve both high accuracy and training efficiency for SNNs. Specifically, to achieve spatial decoupling, STDL partitions the network into smaller subnetworks, each of which is trained independently using an auxiliary network. To address the decreased synergy among subnetworks resulting from spatial decoupling, STDL constructs each subnetwork's auxiliary network by selecting the largest subset of layers from its subsequent network layers under a memory constraint. Furthermore, STDL decouples dependencies across time steps to enable efficient online learning. Extensive evaluations on seven static and event-based vision datasets demonstrate that STDL consistently outperforms local learning methods and achieves comparable accuracy to the BPTT method with considerably reduced GPU memory cost. Notably, STDL achieves 4x reduced GPU memory than BPTT on the ImageNet dataset. Therefore, this work opens up a promising avenue for memory-efficient SNN training. Code is available at https://github.com/ChenxiangMA/STDL.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube