Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Bidirectionality Helps Language Models Learn Better via Dynamic Bottleneck Estimation (2506.00859v2)

Published 1 Jun 2025 in cs.CL

Abstract: Bidirectional LLMs have better context understanding and perform better than unidirectional models on natural language understanding tasks, yet the theoretical reasons behind this advantage remain unclear. In this work, we investigate this disparity through the lens of the Information Bottleneck (IB) principle, which formalizes a trade-off between compressing input information and preserving task-relevant content. We propose FlowNIB, a dynamic and scalable method for estimating mutual information during training that addresses key limitations of classical IB approaches, including computational intractability and fixed trade-off schedules. Theoretically, we show that bidirectional models retain more mutual information and exhibit higher effective dimensionality than unidirectional models. To support this, we present a generalized framework for measuring representational complexity and prove that bidirectional representations are strictly more informative under mild conditions. We further validate our findings through extensive experiments across multiple models and tasks using FlowNIB, revealing how information is encoded and compressed throughout training. Together, our work provides a principled explanation for the effectiveness of bidirectional architectures and introduces a practical tool for analyzing information flow in deep LLMs.

Summary

We haven't generated a summary for this paper yet.