Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Speech Unlearning (2506.00848v1)

Published 1 Jun 2025 in cs.LG, cs.AI, cs.SD, and eess.AS

Abstract: We introduce machine unlearning for speech tasks, a novel and underexplored research problem that aims to efficiently and effectively remove the influence of specific data from trained speech models without full retraining. This has important applications in privacy preservation, removal of outdated or noisy data, and bias mitigation. While machine unlearning has been studied in computer vision and natural language processing, its application to speech is largely unexplored due to the high-dimensional, sequential, and speaker-dependent nature of speech data. We define two fundamental speech unlearning tasks: sample unlearning, which removes individual data points (e.g., a voice recording), and class unlearning, which removes an entire category (e.g., all data from a speaker), while preserving performance on the remaining data. Experiments on keyword spotting and speaker identification demonstrate that unlearning speech data is significantly more challenging than unlearning image or text data. We conclude with key future directions in this area, including structured training, robust evaluation, feature-level unlearning, broader applications, scalable methods, and adversarial robustness.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)