Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

CLAP-ART: Automated Audio Captioning with Semantic-rich Audio Representation Tokenizer (2506.00800v1)

Published 1 Jun 2025 in eess.AS, cs.LG, and cs.SD

Abstract: Automated Audio Captioning (AAC) aims to describe the semantic contexts of general sounds, including acoustic events and scenes, by leveraging effective acoustic features. To enhance performance, an AAC method, EnCLAP, employed discrete tokens from EnCodec as an effective input for fine-tuning a LLM BART. However, EnCodec is designed to reconstruct waveforms rather than capture the semantic contexts of general sounds, which AAC should describe. To address this issue, we propose CLAP-ART, an AAC method that utilizes ``semantic-rich and discrete'' tokens as input. CLAP-ART computes semantic-rich discrete tokens from pre-trained audio representations through vector quantization. We experimentally confirmed that CLAP-ART outperforms baseline EnCLAP on two AAC benchmarks, indicating that semantic-rich discrete tokens derived from semantically rich AR are beneficial for AAC.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.