Gaussian mixture models as a proxy for interacting language models (2506.00077v2)
Abstract: LLMs are a powerful tool with the ability to match human capabilities and behavior in many settings. Retrieval-augmented generation (RAG) further allows LLMs to generate diverse output depending on the contents of their RAG database. This motivates their use in the social sciences to study human behavior between individuals when large-scale experiments are infeasible. However, LLMs depend on complex, computationally expensive algorithms. In this paper, we introduce interacting Gaussian mixture models (GMMs) as an alternative to similar frameworks using LLMs. We compare a simplified model of GMMs to select experimental simulations of LLMs whose updating and response depend on feedback from other LLMs. We find that interacting GMMs capture important features of the dynamics in interacting LLMs, and we investigate key similarities and differences between interacting LLMs and GMMs. We conclude by discussing the benefits of Gaussian mixture models, potential modifications, and future research directions.