Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Retrieval-Augmented Generation: A Comprehensive Survey of Architectures, Enhancements, and Robustness Frontiers (2506.00054v1)

Published 28 May 2025 in cs.IR and cs.CL

Abstract: Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm to enhance LLMs by conditioning generation on external evidence retrieved at inference time. While RAG addresses critical limitations of parametric knowledge storage-such as factual inconsistency and domain inflexibility-it introduces new challenges in retrieval quality, grounding fidelity, pipeline efficiency, and robustness against noisy or adversarial inputs. This survey provides a comprehensive synthesis of recent advances in RAG systems, offering a taxonomy that categorizes architectures into retriever-centric, generator-centric, hybrid, and robustness-oriented designs. We systematically analyze enhancements across retrieval optimization, context filtering, decoding control, and efficiency improvements, supported by comparative performance analyses on short-form and multi-hop question answering tasks. Furthermore, we review state-of-the-art evaluation frameworks and benchmarks, highlighting trends in retrieval-aware evaluation, robustness testing, and federated retrieval settings. Our analysis reveals recurring trade-offs between retrieval precision and generation flexibility, efficiency and faithfulness, and modularity and coordination. We conclude by identifying open challenges and future research directions, including adaptive retrieval architectures, real-time retrieval integration, structured reasoning over multi-hop evidence, and privacy-preserving retrieval mechanisms. This survey aims to consolidate current knowledge in RAG research and serve as a foundation for the next generation of retrieval-augmented LLMing systems.

Summary

We haven't generated a summary for this paper yet.