Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LPASS: Linear Probes as Stepping Stones for vulnerability detection using compressed LLMs (2505.24451v1)

Published 30 May 2025 in cs.CR and cs.AI

Abstract: LLMs are being extensively used for cybersecurity purposes. One of them is the detection of vulnerable codes. For the sake of efficiency and effectiveness, compression and fine-tuning techniques are being developed, respectively. However, they involve spending substantial computational efforts. In this vein, we analyse how Linear Probes (LPs) can be used to provide an estimation on the performance of a compressed LLM at an early phase -- before fine-tuning. We also show their suitability to set the cut-off point when applying layer pruning compression. Our approach, dubbed $LPASS$, is applied in BERT and Gemma for the detection of 12 of MITRE's Top 25 most dangerous vulnerabilities on 480k C/C++ samples. LPs can be computed in 142.97 s. and provide key findings: (1) 33.3 \% and 72.2\% of layers can be removed, respectively, with no precision loss; (2) they provide an early estimate of the post-fine-tuning and post-compression model effectiveness, with 3\% and 8.68\% as the lowest and average precision errors, respectively. $LPASS$-based LLMs outperform the state of the art, reaching 86.9\% of accuracy in multi-class vulnerability detection. Interestingly, $LPASS$-based compressed versions of Gemma outperform the original ones by 1.6\% of F1-score at a maximum while saving 29.4 \% and 23.8\% of training and inference time and 42.98\% of model size.

Summary

We haven't generated a summary for this paper yet.