Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
105 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interactive Video Generation via Domain Adaptation (2505.24253v1)

Published 30 May 2025 in cs.CV, cs.AI, and cs.MM

Abstract: Text-conditioned diffusion models have emerged as powerful tools for high-quality video generation. However, enabling Interactive Video Generation (IVG), where users control motion elements such as object trajectory, remains challenging. Recent training-free approaches introduce attention masking to guide trajectory, but this often degrades perceptual quality. We identify two key failure modes in these methods, both of which we interpret as domain shift problems, and propose solutions inspired by domain adaptation. First, we attribute the perceptual degradation to internal covariate shift induced by attention masking, as pretrained models are not trained to handle masked attention. To address this, we propose mask normalization, a pre-normalization layer designed to mitigate this shift via distribution matching. Second, we address initialization gap, where the randomly sampled initial noise does not align with IVG conditioning, by introducing a temporal intrinsic diffusion prior that enforces spatio-temporal consistency at each denoising step. Extensive qualitative and quantitative evaluations demonstrate that mask normalization and temporal intrinsic denoising improve both perceptual quality and trajectory control over the existing state-of-the-art IVG techniques.

Summary

We haven't generated a summary for this paper yet.