Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
47 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
88 tokens/sec
DeepSeek R1 via Azure Premium
79 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

Proxy Target: Bridging the Gap Between Discrete Spiking Neural Networks and Continuous Control (2505.24161v1)

Published 30 May 2025 in cs.NE and cs.LG

Abstract: Spiking Neural Networks (SNNs) offer low-latency and energy-efficient decision making through neuromorphic hardware, making them compelling for Reinforcement Learning (RL) in resource-constrained edge devices. Recent studies in this field directly replace Artificial Neural Networks (ANNs) by SNNs in existing RL frameworks, overlooking whether the RL algorithm is suitable for SNNs. However, most RL algorithms in continuous control are designed tailored to ANNs, including the target network soft updates mechanism, which conflict with the discrete, non-differentiable dynamics of SNN spikes. We identify that this mismatch destabilizes SNN training in continuous control tasks. To bridge this gap between discrete SNN and continuous control, we propose a novel proxy target framework. The continuous and differentiable dynamics of the proxy target enable smooth updates, bypassing the incompatibility of SNN spikes, stabilizing the RL algorithms. Since the proxy network operates only during training, the SNN retains its energy efficiency during deployment without inference overhead. Extensive experiments on continuous control benchmarks demonstrate that compared to vanilla SNNs, the proxy target framework enables SNNs to achieve up to 32% higher performance across different spiking neurons. Notably, we are the first to surpass ANN performance in continuous control with simple Leaky-Integrate-and-Fire (LIF) neurons. This work motivates a new class of SNN-friendly RL algorithms tailored to SNN's characteristics, paving the way for neuromorphic agents that combine high performance with low power consumption.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.