Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emergent LLM behaviors are observationally equivalent to data leakage (2505.23796v1)

Published 26 May 2025 in cs.CL and cs.GT

Abstract: Ashery et al. recently argue that LLMs, when paired to play a classic "naming game," spontaneously develop linguistic conventions reminiscent of human social norms. Here, we show that their results are better explained by data leakage: the models simply reproduce conventions they already encountered during pre-training. Despite the authors' mitigation measures, we provide multiple analyses demonstrating that the LLMs recognize the structure of the coordination game and recall its outcomes, rather than exhibit "emergent" conventions. Consequently, the observed behaviors are indistinguishable from memorization of the training corpus. We conclude by pointing to potential alternative strategies and reflecting more generally on the place of LLMs for social science models.

Summary

We haven't generated a summary for this paper yet.