Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

MCP Safety Training: Learning to Refuse Falsely Benign MCP Exploits using Improved Preference Alignment (2505.23634v1)

Published 29 May 2025 in cs.LG and cs.CR

Abstract: The model context protocol (MCP) has been widely adapted as an open standard enabling the seamless integration of generative AI agents. However, recent work has shown the MCP is susceptible to retrieval-based "falsely benign" attacks (FBAs), allowing malicious system access and credential theft, but requiring that users download compromised files directly to their systems. Herein, we show that the threat model of MCP-based attacks is significantly broader than previously thought, i.e., attackers need only post malicious content online to deceive MCP agents into carrying out their attacks on unsuspecting victims' systems. To improve alignment guardrails against such attacks, we introduce a new MCP dataset of FBAs and (truly) benign samples to explore the effectiveness of direct preference optimization (DPO) for the refusal training of LLMs. While DPO improves model guardrails against such attacks, we show that the efficacy of refusal learning varies drastically depending on the model's original post-training alignment scheme--e.g., GRPO-based LLMs learn to refuse extremely poorly. Thus, to further improve FBA refusals, we introduce Retrieval Augmented Generation for Preference alignment (RAG-Pref), a novel preference alignment strategy based on RAG. We show that RAG-Pref significantly improves the ability of LLMs to refuse FBAs, particularly when combined with DPO alignment, thus drastically improving guardrails against MCP-based attacks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com