Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

HiLDe: Intentional Code Generation via Human-in-the-Loop Decoding (2505.22906v2)

Published 28 May 2025 in cs.HC, cs.AI, and cs.PL

Abstract: While AI programming tools hold the promise of increasing programmers' capabilities and productivity to a remarkable degree, they often exclude users from essential decision-making processes, causing many to effectively "turn off their brains" and over-rely on solutions provided by these systems. These behaviors can have severe consequences in critical domains, like software security. We propose Human-in-the-loop Decoding, a novel interaction technique that allows users to observe and directly influence LLM decisions during code generation, in order to align the model's output with their personal requirements. We implement this technique in HiLDe, a code completion assistant that highlights critical decisions made by the LLM and provides local alternatives for the user to explore. In a within-subjects study (N=18) on security-related tasks, we found that HiLDe led participants to generate significantly fewer vulnerabilities and better align code generation with their goals compared to a traditional code completion assistant.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.