Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

Stratified Selective Sampling for Instruction Tuning with Dedicated Scoring Strategy (2505.22157v1)

Published 28 May 2025 in cs.CL

Abstract: Recent work shows that post-training datasets for LLMs can be substantially downsampled without noticeably deteriorating performance. However, data selection often incurs high computational costs or is limited to narrow domains. In this paper, we demonstrate that data selection can be both -- efficient and universal -- by using a multi-step pipeline in which we efficiently bin data points into groups, estimate quality using specialized models, and score difficulty with a robust, lightweight method. Task-based categorization allows us to control the composition of our final data -- crucial for finetuning multi-purpose models. To guarantee diversity, we improve upon previous work using embedding models and a clustering algorithm. This integrated strategy enables high-performance fine-tuning with minimal overhead.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.