Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Differentiable Generalized Sliced Wasserstein Plans (2505.22049v1)

Published 28 May 2025 in cs.LG

Abstract: Optimal Transport (OT) has attracted significant interest in the machine learning community, not only for its ability to define meaningful distances between probability distributions -- such as the Wasserstein distance -- but also for its formulation of OT plans. Its computational complexity remains a bottleneck, though, and slicing techniques have been developed to scale OT to large datasets. Recently, a novel slicing scheme, dubbed min-SWGG, lifts a single one-dimensional plan back to the original multidimensional space, finally selecting the slice that yields the lowest Wasserstein distance as an approximation of the full OT plan. Despite its computational and theoretical advantages, min-SWGG inherits typical limitations of slicing methods: (i) the number of required slices grows exponentially with the data dimension, and (ii) it is constrained to linear projections. Here, we reformulate min-SWGG as a bilevel optimization problem and propose a differentiable approximation scheme to efficiently identify the optimal slice, even in high-dimensional settings. We furthermore define its generalized extension for accommodating to data living on manifolds. Finally, we demonstrate the practical value of our approach in various applications, including gradient flows on manifolds and high-dimensional spaces, as well as a novel sliced OT-based conditional flow matching for image generation -- where fast computation of transport plans is essential.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.