Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

STACI: Spatio-Temporal Aleatoric Conformal Inference (2505.21658v1)

Published 27 May 2025 in stat.ML, cs.LG, and stat.ME

Abstract: Fitting Gaussian Processes (GPs) provides interpretable aleatoric uncertainty quantification for estimation of spatio-temporal fields. Spatio-temporal deep learning models, while scalable, typically assume a simplistic independent covariance matrix for the response, failing to capture the underlying correlation structure. However, spatio-temporal GPs suffer from issues of scalability and various forms of approximation bias resulting from restrictive assumptions of the covariance kernel function. We propose STACI, a novel framework consisting of a variational Bayesian neural network approximation of non-stationary spatio-temporal GP along with a novel spatio-temporal conformal inference algorithm. STACI is highly scalable, taking advantage of GPU training capabilities for neural network models, and provides statistically valid prediction intervals for uncertainty quantification. STACI outperforms competing GPs and deep methods in accurately approximating spatio-temporal processes and we show it easily scales to datasets with millions of observations.

Summary

We haven't generated a summary for this paper yet.