Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
44 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
105 tokens/sec
DeepSeek R1 via Azure Premium
83 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Does quantization affect models' performance on long-context tasks? (2505.20276v2)

Published 26 May 2025 in cs.CL and cs.AI

Abstract: LLMs now support context windows exceeding 128K tokens, but this comes with significant memory requirements and high inference latency. Quantization can mitigate these costs, but may degrade performance. In this work, we present the first systematic evaluation of quantized LLMs on tasks with long-inputs (>64K tokens) and long-form outputs. Our evaluation spans 9.7K test examples, five quantization methods (FP8, GPTQ-int8, AWQ-int4, GPTQ-int4, BNB-nf4), and five models (Llama-3.1 8B and 70B; Qwen-2.5 7B, 32B, and 72B). We find that, on average, 8-bit quantization preserves accuracy (~0.8% drop), whereas 4-bit methods lead to substantial losses, especially for tasks involving long context inputs (drops of up to 59%). This degradation tends to worsen when the input is in a language other than English. Crucially, the effects of quantization depend heavily on the quantization method, model, and task. For instance, while Qwen-2.5 72B remains robust under BNB-nf4, Llama-3.1 70B experiences a 32% performance drop on the same task. These findings highlight the importance of a careful, task-specific evaluation before deploying quantized LLMs, particularly in long-context scenarios and with languages other than English.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.