Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
107 tokens/sec
Gemini 2.5 Pro Premium
58 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
84 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Dependency Parsing is More Parameter-Efficient with Normalization (2505.20215v1)

Published 26 May 2025 in cs.CL

Abstract: Dependency parsing is the task of inferring natural language structure, often approached by modeling word interactions via attention through biaffine scoring. This mechanism works like self-attention in Transformers, where scores are calculated for every pair of words in a sentence. However, unlike Transformer attention, biaffine scoring does not use normalization prior to taking the softmax of the scores. In this paper, we provide theoretical evidence and empirical results revealing that a lack of normalization necessarily results in overparameterized parser models, where the extra parameters compensate for the sharp softmax outputs produced by high variance inputs to the biaffine scoring function. We argue that biaffine scoring can be made substantially more efficient by performing score normalization. We conduct experiments on six datasets for semantic and syntactic dependency parsing using a one-hop parser. We train N-layer stacked BiLSTMs and evaluate the parser's performance with and without normalizing biaffine scores. Normalizing allows us to beat the state of the art on two datasets, with fewer samples and trainable parameters. Code: https://anonymous.4open.science/r/EfficientSDP-70C1

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube