Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Bandits with Non-i.i.d. Noise (2505.20017v2)

Published 26 May 2025 in stat.ML and cs.LG

Abstract: We study the linear stochastic bandit problem, relaxing the standard i.i.d. assumption on the observation noise. As an alternative to this restrictive assumption, we allow the noise terms across rounds to be sub-Gaussian but interdependent, with dependencies that decay over time. To address this setting, we develop new confidence sequences using a recently introduced reduction scheme to sequential probability assignment, and use these to derive a bandit algorithm based on the principle of optimism in the face of uncertainty. We provide regret bounds for the resulting algorithm, expressed in terms of the decay rate of the strength of dependence between observations. Among other results, we show that our bounds recover the standard rates up to a factor of the mixing time for geometrically mixing observation noise.

Summary

We haven't generated a summary for this paper yet.