Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Foundation Models for Tabular Data within Systemic Contexts Need Grounding (2505.19825v1)

Published 26 May 2025 in cs.LG, cs.AI, and cs.DB

Abstract: Current research on tabular foundation models often overlooks the complexities of large-scale, real-world data by treating tables as isolated entities and assuming information completeness, thereby neglecting the vital operational context. To address this, we introduce the concept of Semantically Linked Tables (SLT), recognizing that tables are inherently connected to both declarative and procedural operational knowledge. We propose Foundation Models for Semantically Linked Tables (FMSLT), which integrate these components to ground tabular data within its true operational context. This comprehensive representation unlocks the full potential of machine learning for complex, interconnected tabular data across diverse domains. Realizing FMSLTs requires access to operational knowledge that is often unavailable in public datasets, highlighting the need for close collaboration between domain experts and researchers. Our work exposes the limitations of current tabular foundation models and proposes a new direction centered on FMSLTs, aiming to advance robust, context-aware models for structured data.

Summary

We haven't generated a summary for this paper yet.