Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
11 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
34 tokens/sec
2000 character limit reached

Likert or Not: LLM Absolute Relevance Judgments on Fine-Grained Ordinal Scales (2505.19334v1)

Published 25 May 2025 in cs.LG and cs.IR

Abstract: LLMs obtain state of the art zero shot relevance ranking performance on a variety of information retrieval tasks. The two most common prompts to elicit LLM relevance judgments are pointwise scoring (a.k.a. relevance generation), where the LLM sees a single query-document pair and outputs a single relevance score, and listwise ranking (a.k.a. permutation generation), where the LLM sees a query and a list of documents and outputs a permutation, sorting the documents in decreasing order of relevance. The current research community consensus is that listwise ranking yields superior performance, and significant research effort has been devoted to crafting LLM listwise ranking algorithms. The underlying hypothesis is that LLMs are better at making relative relevance judgments than absolute ones. In tension with this hypothesis, we find that the gap between pointwise scoring and listwise ranking shrinks when pointwise scoring is implemented using a sufficiently large ordinal relevance label space, becoming statistically insignificant for many LLM-benchmark dataset combinations (where significant'' means95\% confidence that listwise ranking improves NDCG@10''). Our evaluations span four LLMs, eight benchmark datasets from the BEIR and TREC-DL suites, and two proprietary datasets with relevance labels collected after the training cut-off of all LLMs evaluated.

Summary

We haven't generated a summary for this paper yet.