Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Co-AttenDWG: Co-Attentive Dimension-Wise Gating and Expert Fusion for Multi-Modal Offensive Content Detection (2505.19010v1)

Published 25 May 2025 in cs.CV and cs.CL

Abstract: Multi-modal learning has become a critical research area because integrating text and image data can significantly improve performance in tasks such as classification, retrieval, and scene understanding. However, despite progress with pre-trained models, current approaches are limited by inadequate cross-modal interactions and static fusion strategies that do not fully exploit the complementary nature of different modalities. To address these shortcomings, we introduce a novel multi-modal Co-AttenDWG architecture that leverages dual-path encoding, co-attention with dimension-wise gating, and advanced expert fusion. Our approach begins by projecting text and image features into a common embedding space, where a dedicated co-attention mechanism enables simultaneous, fine-grained interactions between modalities. This mechanism is further enhanced by a dimension-wise gating network that adaptively regulates the feature contributions at the channel level, ensuring that only the most relevant information is emphasized. In parallel, dual-path encoders refine the representations by processing cross-modal information separately before an additional cross-attention layer further aligns modalities. The refined features are then aggregated via an expert fusion module that combines learned gating and self-attention to produce a robust, unified representation. We validate our approach on the MIMIC and SemEval Memotion 1.0, where experimental results demonstrate significant improvements in cross-modal alignment and state-of-the-art performance, underscoring the potential of our model for a wide range of multi-modal applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.