Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-supervised learning method using multiple sampling strategies for general-purpose audio representation (2505.18984v1)

Published 25 May 2025 in cs.SD and eess.AS

Abstract: We propose a self-supervised learning method using multiple sampling strategies to obtain general-purpose audio representation. Multiple sampling strategies are used in the proposed method to construct contrastive losses from different perspectives and learn representations based on them. In this study, in addition to the widely used clip-level sampling strategy, we introduce two new strategies, a frame-level strategy and a task-specific strategy. The proposed multiple strategies improve the performance of frame-level classification and other tasks like pitch detection, which are not the focus of the conventional single clip-level sampling strategy. We pre-trained the method on a subset of Audioset and applied it to a downstream task with frozen weights. The proposed method improved clip classification, sound event detection, and pitch detection performance by 25%, 20%, and 3.6%.

Summary

We haven't generated a summary for this paper yet.