Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FastMamba: A High-Speed and Efficient Mamba Accelerator on FPGA with Accurate Quantization (2505.18975v3)

Published 25 May 2025 in cs.AR and cs.AI

Abstract: State Space Models (SSMs), like recent Mamba2, have achieved remarkable performance and received extensive attention. However, deploying Mamba2 on resource-constrained edge devices encounters many problems: severe outliers within the linear layer challenging the quantization, diverse and irregular element-wise tensor operations, and hardware-unfriendly nonlinear functions in the SSM block. To address these issues, this paper presents FastMamba, a dedicated accelerator on FPGA with hardware-algorithm co-design to promote the deployment efficiency of Mamba2. Specifically, we successfully achieve 8-bit quantization for linear layers through Hadamard transformation to eliminate outliers. Moreover, a hardware-friendly and fine-grained power-of-two quantization framework is presented for the SSM block and convolution layer, and a first-order linear approximation is developed to optimize the nonlinear functions. Based on the accurate algorithm quantization, we propose an accelerator that integrates parallel vector processing units, pipelined execution dataflow, and an efficient SSM Nonlinear Approximation Unit, which enhances computational efficiency and reduces hardware complexity. Finally, we evaluate FastMamba on Xilinx VC709 FPGA. For the input prefill task on Mamba2-130M, FastMamba achieves 68.80\times and 8.90\times speedup over Intel Xeon 4210R CPU and NVIDIA RTX 3090 GPU, respectively. In the output decode experiment with Mamba2-2.7B, FastMamba attains 6\times higher energy efficiency than RTX 3090 GPU.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com