Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
107 tokens/sec
Gemini 2.5 Pro Premium
58 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
84 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

From Word to World: Evaluate and Mitigate Culture Bias via Word Association Test (2505.18562v1)

Published 24 May 2025 in cs.CL and cs.AI

Abstract: The human-centered word association test (WAT) serves as a cognitive proxy, revealing sociocultural variations through lexical-semantic patterns. We extend this test into an LLM-adaptive, free-relation task to assess the alignment of LLMs with cross-cultural cognition. To mitigate the culture preference, we propose CultureSteer, an innovative approach that integrates a culture-aware steering mechanism to guide semantic representations toward culturally specific spaces. Experiments show that current LLMs exhibit significant bias toward Western cultural (notably in American) schemas at the word association level. In contrast, our model substantially improves cross-cultural alignment, surpassing prompt-based methods in capturing diverse semantic associations. Further validation on culture-sensitive downstream tasks confirms its efficacy in fostering cognitive alignment across cultures. This work contributes a novel methodological paradigm for enhancing cultural awareness in LLMs, advancing the development of more inclusive language technologies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube