Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing Human and AI Rater Effects Using the Many-Facet Rasch Model (2505.18486v2)

Published 24 May 2025 in cs.CL and cs.LG

Abstract: LLMs have been widely explored for automated scoring in low-stakes assessment to facilitate learning and instruction. Empirical evidence related to which LLM produces the most reliable scores and induces least rater effects needs to be collected before the use of LLMs for automated scoring in practice. This study compared ten LLMs (ChatGPT 3.5, ChatGPT 4, ChatGPT 4o, OpenAI o1, Claude 3.5 Sonnet, Gemini 1.5, Gemini 1.5 Pro, Gemini 2.0, as well as DeepSeek V3, and DeepSeek R1) with human expert raters in scoring two types of writing tasks. The accuracy of the holistic and analytic scores from LLMs compared with human raters was evaluated in terms of Quadratic Weighted Kappa. Intra-rater consistency across prompts was compared in terms of Cronbach Alpha. Rater effects of LLMs were evaluated and compared with human raters using the Many-Facet Rasch model. The results in general supported the use of ChatGPT 4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet with high scoring accuracy, better rater reliability, and less rater effects.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com