Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 434 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

A Dataset and Benchmarks for Deep Learning-Based Optical Microrobot Pose and Depth Perception (2505.18303v1)

Published 23 May 2025 in cs.RO

Abstract: Optical microrobots, manipulated via optical tweezers (OT), have broad applications in biomedicine. However, reliable pose and depth perception remain fundamental challenges due to the transparent or low-contrast nature of the microrobots, as well as the noisy and dynamic conditions of the microscale environments in which they operate. An open dataset is crucial for enabling reproducible research, facilitating benchmarking, and accelerating the development of perception models tailored to microscale challenges. Standardised evaluation enables consistent comparison across algorithms, ensuring objective benchmarking and facilitating reproducible research. Here, we introduce the OpTical MicroRobot dataset (OTMR), the first publicly available dataset designed to support microrobot perception under the optical microscope. OTMR contains 232,881 images spanning 18 microrobot types and 176 distinct poses. We benchmarked the performance of eight deep learning models, including architectures derived via neural architecture search (NAS), on two key tasks: pose classification and depth regression. Results indicated that Vision Transformer (ViT) achieve the highest accuracy in pose classification, while depth regression benefits from deeper architectures. Additionally, increasing the size of the training dataset leads to substantial improvements across both tasks, highlighting OTMR's potential as a foundational resource for robust and generalisable microrobot perception in complex microscale environments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com