Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Riemannian Flow Matching for Brain Connectivity Matrices via Pullback Geometry (2505.18193v1)

Published 20 May 2025 in cs.LG, eess.SP, and stat.ML

Abstract: Generating realistic brain connectivity matrices is key to analyzing population heterogeneity in brain organization, understanding disease, and augmenting data in challenging classification problems. Functional connectivity matrices lie in constrained spaces--such as the set of symmetric positive definite or correlation matrices--that can be modeled as Riemannian manifolds. However, using Riemannian tools typically requires redefining core operations (geodesics, norms, integration), making generative modeling computationally inefficient. In this work, we propose DiffeoCFM, an approach that enables conditional flow matching (CFM) on matrix manifolds by exploiting pullback metrics induced by global diffeomorphisms on Euclidean spaces. We show that Riemannian CFM with such metrics is equivalent to applying standard CFM after data transformation. This equivalence allows efficient vector field learning, and fast sampling with standard ODE solvers. We instantiate DiffeoCFM with two different settings: the matrix logarithm for covariance matrices and the normalized Cholesky decomposition for correlation matrices. We evaluate DiffeoCFM on three large-scale fMRI datasets with more than 4600 scans from 2800 subjects (ADNI, ABIDE, OASIS-3) and two EEG motor imagery datasets with over 30000 trials from 26 subjects (BNCI2014-002 and BNCI2015-001). It enables fast training and achieves state-of-the-art performance, all while preserving manifold constraints.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com