Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Efficient Adaptive Experimentation with Non-Compliance (2505.17468v1)

Published 23 May 2025 in stat.ME, cs.LG, and stat.ML

Abstract: We study the problem of estimating the average treatment effect (ATE) in adaptive experiments where treatment can only be encouraged--rather than directly assigned--via a binary instrumental variable. Building on semiparametric efficiency theory, we derive the efficiency bound for ATE estimation under arbitrary, history-dependent instrument-assignment policies, and show it is minimized by a variance-aware allocation rule that balances outcome noise and compliance variability. Leveraging this insight, we introduce AMRIV--an \textbf{A}daptive, \textbf{M}ultiply-\textbf{R}obust estimator for \textbf{I}nstrumental-\textbf{V}ariable settings with variance-optimal assignment. AMRIV pairs (i) an online policy that adaptively approximates the optimal allocation with (ii) a sequential, influence-function-based estimator that attains the semiparametric efficiency bound while retaining multiply-robust consistency. We establish asymptotic normality, explicit convergence rates, and anytime-valid asymptotic confidence sequences that enable sequential inference. Finally, we demonstrate the practical effectiveness of our approach through empirical studies, showing that adaptive instrument assignment, when combined with the AMRIV estimator, yields improved efficiency and robustness compared to existing baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com