Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 434 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

Semi-Clairvoyant Scheduling of Speculative Decoding Requests to Minimize LLM Inference Latency (2505.17074v1)

Published 20 May 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Speculative decoding accelerates LLM inference by employing a small speculative model (SSM) to generate multiple candidate tokens and verify them using the LLM in parallel. This technique has been widely integrated into LLM inference serving systems. However, inference requests typically exhibit uncertain execution time, which poses a significant challenge of efficiently scheduling requests in these systems. Existing work estimates execution time based solely on predicted output length, which could be inaccurate because execution time depends on both output length and token acceptance rate of verification by the LLM. In this paper, we propose a semi-clairvoyant request scheduling algorithm called Least-Attained/Perceived-Service for Speculative Decoding (LAPS-SD). Given a number of inference requests, LAPS-SD can effectively minimize average inference latency by adaptively scheduling requests according to their features during decoding. When the token acceptance rate is dynamic and execution time is difficult to estimate, LAPS-SD maintains multiple priority queues and allows request execution preemption across different queues. Once the token acceptance rate becomes stable, LAPS-SD can accurately estimate the execution time and schedule requests accordingly. Extensive experiments show that LAPS-SD reduces inference latency by approximately 39\% compared to state-of-the-art scheduling methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.