Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Test for Saliency Maps of Graph Neural Networks via Selective Inference (2505.16893v1)

Published 22 May 2025 in stat.ML and cs.LG

Abstract: Graph Neural Networks (GNNs) have gained prominence for their ability to process graph-structured data across various domains. However, interpreting GNN decisions remains a significant challenge, leading to the adoption of saliency maps for identifying influential nodes and edges. Despite their utility, the reliability of GNN saliency maps has been questioned, particularly in terms of their robustness to noise. In this study, we propose a statistical testing framework to rigorously evaluate the significance of saliency maps. Our main contribution lies in addressing the inflation of the Type I error rate caused by double-dipping of data, leveraging the framework of Selective Inference. Our method provides statistically valid $p$-values while controlling the Type I error rate, ensuring that identified salient subgraphs contain meaningful information rather than random artifacts. To demonstrate the effectiveness of our method, we conduct experiments on both synthetic and real-world datasets, showing its effectiveness in assessing the reliability of GNN interpretations.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Youtube Logo Streamline Icon: https://streamlinehq.com