Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Tactile-based Reinforcement Learning for Adaptive Grasping under Observation Uncertainties (2505.16167v1)

Published 22 May 2025 in cs.RO

Abstract: Robotic manipulation in industrial scenarios such as construction commonly faces uncertain observations in which the state of the manipulating object may not be accurately captured due to occlusions and partial observables. For example, object status estimation during pipe assembly, rebar installation, and electrical installation can be impacted by observation errors. Traditional vision-based grasping methods often struggle to ensure robust stability and adaptability. To address this challenge, this paper proposes a tactile simulator that enables a tactile-based adaptive grasping method to enhance grasping robustness. This approach leverages tactile feedback combined with the Proximal Policy Optimization (PPO) reinforcement learning algorithm to dynamically adjust the grasping posture, allowing adaptation to varying grasping conditions under inaccurate object state estimations. Simulation results demonstrate that the proposed method effectively adapts grasping postures, thereby improving the success rate and stability of grasping tasks.

Summary

We haven't generated a summary for this paper yet.