Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

"Alexa, can you forget me?" Machine Unlearning Benchmark in Spoken Language Understanding (2505.15700v2)

Published 21 May 2025 in cs.CL, eess.AS, and cs.SD

Abstract: Machine unlearning, the process of efficiently removing specific information from machine learning models, is a growing area of interest for responsible AI. However, few studies have explored the effectiveness of unlearning methods on complex tasks, particularly speech-related ones. This paper introduces UnSLU-BENCH, the first benchmark for machine unlearning in spoken language understanding (SLU), focusing on four datasets spanning four languages. We address the unlearning of data from specific speakers as a way to evaluate the quality of potential "right to be forgotten" requests. We assess eight unlearning techniques and propose a novel metric to simultaneously better capture their efficacy, utility, and efficiency. UnSLU-BENCH sets a foundation for unlearning in SLU and reveals significant differences in the effectiveness and computational feasibility of various techniques.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.