Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AM-PPO: (Advantage) Alpha-Modulation with Proximal Policy Optimization (2505.15514v1)

Published 21 May 2025 in cs.LG, cs.AI, and cs.NE

Abstract: Proximal Policy Optimization (PPO) is a widely used reinforcement learning algorithm that heavily relies on accurate advantage estimates for stable and efficient training. However, raw advantage signals can exhibit significant variance, noise, and scale-related issues, impeding optimal learning performance. To address this challenge, we introduce Advantage Modulation PPO (AM-PPO), a novel enhancement of PPO that adaptively modulates advantage estimates using a dynamic, non-linear scaling mechanism. This adaptive modulation employs an alpha controller that dynamically adjusts the scaling factor based on evolving statistical properties of the advantage signals, such as their norm, variance, and a predefined target saturation level. By incorporating a tanh-based gating function driven by these adaptively scaled advantages, AM-PPO reshapes the advantage signals to stabilize gradient updates and improve the conditioning of the policy gradient landscape. Crucially, this modulation also influences value function training by providing consistent and adaptively conditioned learning targets. Empirical evaluations across standard continuous control benchmarks demonstrate that AM-PPO achieves superior reward trajectories, exhibits sustained learning progression, and significantly reduces the clipping required by adaptive optimizers. These findings underscore the potential of advantage modulation as a broadly applicable technique for enhancing reinforcement learning optimization.

Summary

We haven't generated a summary for this paper yet.