Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
36 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
38 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Gated Integration of Low-Rank Adaptation for Continual Learning of Language Models (2505.15424v1)

Published 21 May 2025 in cs.CL

Abstract: Continual learning (CL), which requires the model to learn multiple tasks sequentially, is crucial for LMs. Recently, low-rank adaptation (LoRA), one of the most representative parameter-efficient fine-tuning (PEFT) methods, has gained increasing attention in CL of LMs. However, most existing CL methods based on LoRA typically expand a new LoRA branch to learn each new task and force the new and old LoRA branches to contribute equally to old tasks, potentially leading to forgetting. In this work, we propose a new method, called gated integration of low-rank adaptation (GainLoRA), for CL of LMs. GainLoRA expands a new LoRA branch for each new task and introduces gating modules to integrate the new and old LoRA branches. Furthermore, GainLoRA leverages the new gating module to minimize the contribution from the new LoRA branch to old tasks, effectively mitigating forgetting and improving the model's overall performance. Experimental results on CL benchmarks demonstrate that GainLoRA outperforms existing state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.