Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

Decoding Phone Pairs from MEG Signals Across Speech Modalities (2505.15355v1)

Published 21 May 2025 in cs.CL, cs.LG, cs.NE, cs.SD, and eess.AS

Abstract: Understanding the neural mechanisms underlying speech production is essential for both advancing cognitive neuroscience theory and developing practical communication technologies. In this study, we investigated magnetoencephalography signals to decode phones from brain activity during speech production and perception (passive listening and voice playback) tasks. Using a dataset comprising 17 participants, we performed pairwise phone classification, extending our analysis to 15 phonetic pairs. Multiple machine learning approaches, including regularized linear models and neural network architectures, were compared to determine their effectiveness in decoding phonetic information. Our results demonstrate significantly higher decoding accuracy during speech production (76.6%) compared to passive listening and playback modalities (~51%), emphasizing the richer neural information available during overt speech. Among the models, the Elastic Net classifier consistently outperformed more complex neural networks, highlighting the effectiveness of traditional regularization techniques when applied to limited and high-dimensional MEG datasets. Besides, analysis of specific brain frequency bands revealed that low-frequency oscillations, particularly Delta (0.2-3 Hz) and Theta (4-7 Hz), contributed the most substantially to decoding accuracy, suggesting that these bands encode critical speech production-related neural processes. Despite using advanced denoising methods, it remains unclear whether decoding solely reflects neural activity or if residual muscular or movement artifacts also contributed, indicating the need for further methodological refinement. Overall, our findings underline the critical importance of examining overt speech production paradigms, which, despite their complexity, offer opportunities to improve brain-computer interfaces to help individuals with severe speech impairments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube