Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

AnyBody: A Benchmark Suite for Cross-Embodiment Manipulation (2505.14986v1)

Published 21 May 2025 in cs.RO and cs.LG

Abstract: Generalizing control policies to novel embodiments remains a fundamental challenge in enabling scalable and transferable learning in robotics. While prior works have explored this in locomotion, a systematic study in the context of manipulation tasks remains limited, partly due to the lack of standardized benchmarks. In this paper, we introduce a benchmark for learning cross-embodiment manipulation, focusing on two foundational tasks-reach and push-across a diverse range of morphologies. The benchmark is designed to test generalization along three axes: interpolation (testing performance within a robot category that shares the same link structure), extrapolation (testing on a robot with a different link structure), and composition (testing on combinations of link structures). On the benchmark, we evaluate the ability of different RL policies to learn from multiple morphologies and to generalize to novel ones. Our study aims to answer whether morphology-aware training can outperform single-embodiment baselines, whether zero-shot generalization to unseen morphologies is feasible, and how consistently these patterns hold across different generalization regimes. The results highlight the current limitations of multi-embodiment learning and provide insights into how architectural and training design choices influence policy generalization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.