Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MMD-Newton Method for Multi-objective Optimization (2505.14610v1)

Published 20 May 2025 in cs.LG

Abstract: Maximum mean discrepancy (MMD) has been widely employed to measure the distance between probability distributions. In this paper, we propose using MMD to solve continuous multi-objective optimization problems (MOPs). For solving MOPs, a common approach is to minimize the distance (e.g., Hausdorff) between a finite approximate set of the Pareto front and a reference set. Viewing these two sets as empirical measures, we propose using MMD to measure the distance between them. To minimize the MMD value, we provide the analytical expression of its gradient and Hessian matrix w.r.t. the search variables, and use them to devise a novel set-oriented, MMD-based Newton (MMDN) method. Also, we analyze the theoretical properties of MMD's gradient and Hessian, including the first-order stationary condition and the eigenspectrum of the Hessian, which are important for verifying the correctness of MMDN. To solve complicated problems, we propose hybridizing MMDN with multiobjective evolutionary algorithms (MOEAs), where we first execute an EA for several iterations to get close to the global Pareto front and then warm-start MMDN with the result of the MOEA to efficiently refine the approximation. We empirically test the hybrid algorithm on 11 widely used benchmark problems, and the results show the hybrid (MMDN + MOEA) can achieve a much better optimization accuracy than EA alone with the same computation budget.

Summary

We haven't generated a summary for this paper yet.