Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Exploring Graph Representations of Logical Forms for Language Modeling (2505.14523v1)

Published 20 May 2025 in cs.CL and cs.AI

Abstract: We make the case for LLMs over logical forms (LFLMs), arguing that such models are more data-efficient than their textual counterparts. To that end, we introduce the Graph-based Formal-Logical Distributional Semantics (GFoLDS) prototype, a pretrained LM over graph representations of logical forms, as a proof-of-concept of LFLMs. Using GFoLDS, we present strong experimental evidence that LFLMs can leverage the built-in, basic linguistic knowledge inherent in such models to immediately begin learning more complex patterns. On downstream tasks, we show that GFoLDS vastly outperforms textual, transformer LMs pretrained on similar amounts of data, indicating that LFLMs can learn with substantially less data than models over plain text. Furthermore, we show that the performance of this model is likely to scale with additional parameters and pretraining data, suggesting the viability of LFLMs in real-world applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)