Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Path-integral molecular dynamics with actively-trained and universal machine learning force fields (2505.14245v1)

Published 20 May 2025 in cond-mat.mtrl-sci, cs.LG, and physics.comp-ph

Abstract: Accounting for nuclear quantum effects (NQEs) can significantly alter material properties at finite temperatures. Atomic modeling using the path-integral molecular dynamics (PIMD) method can fully account for such effects, but requires computationally efficient and accurate models of interatomic interactions. Empirical potentials are fast but may lack sufficient accuracy, whereas quantum-mechanical calculations are highly accurate but computationally expensive. Machine-learned interatomic potentials offer a solution to this challenge, providing near-quantum-mechanical accuracy while maintaining high computational efficiency compared to density functional theory (DFT) calculations. In this context, an interface was developed to integrate moment tensor potentials (MTPs) from the MLIP-2 software package into PIMD calculations using the i-PI software package. This interface was then applied to active learning of potentials and to investigate the influence of NQEs on material properties, namely the temperature dependence of lattice parameters and thermal expansion coefficients, as well as radial distribution functions, for lithium hydride (LiH) and silicon (Si) systems. The results were compared with experimental data, quasi-harmonic approximation calculations, and predictions from the universal machine learning force field MatterSim. These comparisons demonstrated the high accuracy and effectiveness of the MTP-PIMD approach.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com