Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
462 tokens/sec
Kimi K2 via Groq Premium
254 tokens/sec
2000 character limit reached

A Methodological Framework for Measuring Spatial Labeling Similarity (2505.14128v1)

Published 20 May 2025 in cs.LG and cs.AI

Abstract: Spatial labeling assigns labels to specific spatial locations to characterize their spatial properties and relationships, with broad applications in scientific research and practice. Measuring the similarity between two spatial labelings is essential for understanding their differences and the contributing factors, such as changes in location properties or labeling methods. An adequate and unbiased measurement of spatial labeling similarity should consider the number of matched labels (label agreement), the topology of spatial label distribution, and the heterogeneous impacts of mismatched labels. However, existing methods often fail to account for all these aspects. To address this gap, we propose a methodological framework to guide the development of methods that meet these requirements. Given two spatial labelings, the framework transforms them into graphs based on location organization, labels, and attributes (e.g., location significance). The distributions of their graph attributes are then extracted, enabling an efficient computation of distributional discrepancy to reflect the dissimilarity level between the two labelings. We further provide a concrete implementation of this framework, termed Spatial Labeling Analogy Metric (SLAM), along with an analysis of its theoretical foundation, for evaluating spatial labeling results in spatial transcriptomics (ST) \textit{as per} their similarity with ground truth labeling. Through a series of carefully designed experimental cases involving both simulated and real ST data, we demonstrate that SLAM provides a comprehensive and accurate reflection of labeling quality compared to other well-established evaluation metrics. Our code is available at https://github.com/YihDu/SLAM.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com