Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Control for Transformer Architectures: Enhancing Generalization, Robustness and Efficiency (2505.13499v1)

Published 16 May 2025 in cs.LG, cs.AI, and math.OC

Abstract: We study Transformers through the perspective of optimal control theory, using tools from continuous-time formulations to derive actionable insights into training and architecture design. This framework improves the performance of existing Transformer models while providing desirable theoretical guarantees, including generalization and robustness. Our framework is designed to be plug-and-play, enabling seamless integration with established Transformer models and requiring only slight changes to the implementation. We conduct seven extensive experiments on tasks motivated by text generation, sentiment analysis, image classification, and point cloud classification. Experimental results show that the framework improves the test performance of the baselines, while being more parameter-efficient. On character-level text generation with nanoGPT, our framework achieves a 46% reduction in final test loss while using 42% fewer parameters. On GPT-2, our framework achieves a 5.6% reduction in final test loss, demonstrating scalability to larger models. To the best of our knowledge, this is the first work that applies optimal control theory to both the training and architecture of Transformers. It offers a new foundation for systematic, theory-driven improvements and moves beyond costly trial-and-error approaches.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets