Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Machine learning the first stage in 2SLS: Practical guidance from bias decomposition and simulation (2505.13422v1)

Published 19 May 2025 in econ.EM, cs.LG, stat.AP, and stat.ML

Abstract: Machine learning (ML) primarily evolved to solve "prediction problems." The first stage of two-stage least squares (2SLS) is a prediction problem, suggesting potential gains from ML first-stage assistance. However, little guidance exists on when ML helps 2SLS$\unicode{x2014}$or when it hurts. We investigate the implications of inserting ML into 2SLS, decomposing the bias into three informative components. Mechanically, ML-in-2SLS procedures face issues common to prediction and causal-inference settings$\unicode{x2014}$and their interaction. Through simulation, we show linear ML methods (e.g., post-Lasso) work well, while nonlinear methods (e.g., random forests, neural nets) generate substantial bias in second-stage estimates$\unicode{x2014}$potentially exceeding the bias of endogenous OLS.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube