Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

MR. Judge: Multimodal Reasoner as a Judge (2505.13403v1)

Published 19 May 2025 in cs.CL

Abstract: The paradigm of using LLMs and Multimodal LLMs (MLLMs) as evaluative judges has emerged as an effective approach in RLHF and inference-time scaling. In this work, we propose Multimodal Reasoner as a Judge (MR. Judge), a paradigm for empowering general-purpose MLLMs judges with strong reasoning capabilities. Instead of directly assigning scores for each response, we formulate the judgement process as a reasoning-inspired multiple-choice problem. Specifically, the judge model first conducts deliberate reasoning covering different aspects of the responses and eventually selects the best response from them. This reasoning process not only improves the interpretibility of the judgement, but also greatly enhances the performance of MLLM judges. To cope with the lack of questions with scored responses, we propose the following strategy to achieve automatic annotation: 1) Reverse Response Candidates Synthesis: starting from a supervised fine-tuning (SFT) dataset, we treat the original response as the best candidate and prompt the MLLM to generate plausible but flawed negative candidates. 2) Text-based reasoning extraction: we carefully design a data synthesis pipeline for distilling the reasoning capability from a text-based reasoning model, which is adopted to enable the MLLM judges to regain complex reasoning ability via warm up supervised fine-tuning. Experiments demonstrate that our MR. Judge is effective across a wide range of tasks. Specifically, our MR. Judge-7B surpasses GPT-4o by 9.9% on VL-RewardBench, and improves performance on MM-Vet during inference-time scaling by up to 7.7%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.