Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

HeteroSpec: Leveraging Contextual Heterogeneity for Efficient Speculative Decoding (2505.13254v1)

Published 19 May 2025 in cs.CL

Abstract: Autoregressive decoding, the standard approach for LLM inference, remains a significant bottleneck due to its sequential nature. While speculative decoding algorithms mitigate this inefficiency through parallel verification, they fail to exploit the inherent heterogeneity in linguistic complexity, a key factor leading to suboptimal resource allocation. We address this by proposing HeteroSpec, a heterogeneity-adaptive speculative decoding framework that dynamically optimizes computational resource allocation based on linguistic context complexity. HeteroSpec introduces two key mechanisms: (1) A novel cumulative meta-path Top-$K$ entropy metric for efficiently identifying predictable contexts. (2) A dynamic resource allocation strategy based on data-driven entropy partitioning, enabling adaptive speculative expansion and pruning tailored to local context difficulty. Evaluated on five public benchmarks and four models, HeteroSpec achieves an average speedup of 4.26$\times$. It consistently outperforms state-of-the-art EAGLE-3 across speedup rates, average acceptance length, and verification cost. Notably, HeteroSpec requires no draft model retraining, incurs minimal overhead, and is orthogonal to other acceleration techniques. It demonstrates enhanced acceleration with stronger draft models, establishing a new paradigm for context-aware LLM inference acceleration.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.