Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative and Contrastive Graph Representation Learning (2505.11776v1)

Published 17 May 2025 in cs.LG and cs.AI

Abstract: Self-supervised learning (SSL) on graphs generates node and graph representations (i.e., embeddings) that can be used for downstream tasks such as node classification, node clustering, and link prediction. Graph SSL is particularly useful in scenarios with limited or no labeled data. Existing SSL methods predominantly follow contrastive or generative paradigms, each excelling in different tasks: contrastive methods typically perform well on classification tasks, while generative methods often excel in link prediction. In this paper, we present a novel architecture for graph SSL that integrates the strengths of both approaches. Our framework introduces community-aware node-level contrastive learning, providing more robust and effective positive and negative node pairs generation, alongside graph-level contrastive learning to capture global semantic information. Additionally, we employ a comprehensive augmentation strategy that combines feature masking, node perturbation, and edge perturbation, enabling robust and diverse representation learning. By incorporating these enhancements, our model achieves superior performance across multiple tasks, including node classification, clustering, and link prediction. Evaluations on open benchmark datasets demonstrate that our model outperforms state-of-the-art methods, achieving a performance lift of 0.23%-2.01% depending on the task and dataset.

Summary

We haven't generated a summary for this paper yet.