Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence and Multiplicity of Solutions for a Cooperative Elliptic System Using Morse Theory (2505.11761v1)

Published 17 May 2025 in math.AP

Abstract: In this paper, we study the existence of nontrivial solutions of the Dirichlet boundary value problem for the following elliptic system: \begin{equation} \left{ \begin{aligned} -\Delta u & = au + bv + f(x,u,v); &\quad\mbox{ for }x\in\Omega,\ -\Delta v & = bu + cv + g(x,u,v), &\quad\mbox{ for }x\in\Omega,\ u&=v=0,&\quad\mbox{ on }\partial\Omega, \end{aligned} \right.\qquad (1) \end{equation} for $x\in\Omega$, where $\Omega\subset\mathbb{R}{N}$ is an open and connected bounded set with a smooth boundary $\partial\Omega$, with $N\geqslant 3,$ $u,v:\overline{\Omega}\rightarrow\mathbb{R}$, $a,b,c\in\mathbb{R},$ and $f,g : \overline{\Omega} \times\mathbb{R}2\rightarrow\mathbb{R}$ are continuous functions with $f(x,0,0)=0$ and $g(x,0,0) = 0$, and with super-quadratic, but sub-critical growth in the last two variables. We prove that the boundary value problem (1) has at least two nontrivial solutions for the case in which the eigenvalues of the matrix $\displaystyle \textbf{M} = \begin{pmatrix} a & b \ b & c \end{pmatrix}$ are higher than the first eigenvalue of the Laplacian over $\Omega$ with Dirichlet boundary conditions; $u = v= 0$ on $\partial\Omega$. We use variational methods and infinite-dimensional Morse theory to obtain the multiplicity result.

Summary

We haven't generated a summary for this paper yet.